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In the first part of this paper presents a gas-kinetic scheme based on the Bhatnagar–
Gross–Krook (BGK) model for the microflow simulations in the near continuum
flow regime. The current method improves the previous gas-kinetic BGK Navier–
Stokes (BGK–NS) solver by (i) implementing a general non-equilibrium state based
on the Chapman–Enskog expansion of the BGK model up to the Knudsen number
squared (Kn)2 in the gas distribution function, (ii) using the compatibility condition to
evaluate all high-order time derivative terms in the Chapman–Enskog expansion, and
(iii) implementing the kinetic boundary condition for the gas distribution function to
obtain ‘slip’ boundary automatically. As a result, the gas-kinetic BGK–Burnett scheme
improves the validity of the BGK–NS solver for the microchannel flow simulations
even in the slip flow regime, where the Navier–Stokes equations with the slip boundary
conditions are considered to be legitimately valid. Owing to the correction to the heat
transport in the energy flux, the Prandtl number in the gas-kinetic BGK–Burnett
method can take any value to capture both viscous and heat conduction effects.
Since the current method is based on the direct evaluation of the gas distribution
function and captures its time evolution, it is different from those methods that are
based on the macroscopic Burnett or extended hydrodynamic equations. The second
part of this paper is about the application of the newly developed gas-kinetic BGK–
Burnett method in the microchannel flows. First, we verify the method in the pressure-
and external-force-driven Poiseuille flows, where the reliable direct simulation Monte
Carlo (DSMC) results are available. In the study of Poiseuille flow with Kn = 0.1,
the qualitative differences in the pressure distribution in the cross-stream direction
between the Navier–Stokes and the DSMC results are resolved by the gas-kinetic
BGK–Burnett scheme. It demonstrates that the BGK–Burnett method could give a
more realistic description of flow motion than the Navier–Stokes method even in the
slip flow regime. After that, the current method is used to simulate the microchannel
flows, where the experimental data are available. In this study, the similarity in
the pressure distribution along the straight microchannel is verified first. Then, the
mass flow rates for different gases, such as argon, helium and nitrogen, in the long
microchannel of submicron height are computed and compared with the experimental
measurements.

1. Introduction
Most microsystems involve fluid flows. When dealing with the flow in configurations

of micrometres or less, many unexpected phenomena have been observed. The flows
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in the macroscopic scale and microsystems are not quite the same. There is great
demand to understand and develop numerical methods for the microflows. With the
definition of Knudsen number Kn, which is the ratio between the mean free path
and the characteristic length scale, such as the height of the microchannel, the flow
in the microchannel is most probably in the slip 10−3 � Kn � 10−1 and transitional
flow 10−1 � Kn � 10 regimes. It is widely accepted that in the slip flow regime the
continuum model, such as the Navier–Stokes equations with slip boundary condition,
is still valid provided the velocity slip and temperature jump boundary conditions are
used properly (Beskok & Karniadakis 1999). Based on the Navier–Stokes equations
and the slip boundary condition, the analytical solutions for the flow distributions
along the channel were obtained by many authors (i.e. Arkilic, Schmidt & Breuer
1997; Karniadakis & Beskok 2002; Zohar et al. 2002).

Direct simulations, for the microchannel flows in the slip regime, include mainly
the direct simulation Monte Carlo (DSMC), the Boltzmann method, Navier–Stokes
solvers and the methods based on the high-order moments equations. Even though
the DSMC method is very successful in the high-speed rarefied gas regime (Bird 1994),
its direct application to the near continuum regime has great numerical difficulties
(Ho & Tai 1998; Oran, OH & Cybyk 1998). For example, how to control the
statistical fluctuation and implementation of the inlet and outlet pressure boundary
conditions becomes a challenge. For the DSMC method, a large sample size is
often required to reduce the fluctuation to a level that is small in comparison
with the macroscopic velocity, see Piekos & Breuer (1996) and Yan & Farouk
(2002). The DSMC information preservation (DSMC-IP) method shows some
promising results in this direction, see Fan & Shen (2001) and Cai et al. (2000).
For the direct Boltzmann solver (Aristov 2001), the operator splitting techniques of
separating the transport and collision processes numerically, may introduce large
numerical dissipation in the near continuum regime when the time step used is much
larger than the particle collision time, see Xu (2001) and Ohwada & Kobayashi
(2004).

From the Boltzmann equation, the derivation of the Navier–Stokes equations
through the Chapman–Enskog expansion is based largely on the assumption of local
equilibrium and small gradients, which allow us to formulate the constitutive relations
required to close the conservation equations. In situations where large gradients exist,
such as in the strong shock layer, these assumption are expected to fail. Therefore,
the validity of a macroscopic theory is theoretically restricted to situations in which
the Knudsen number Kn is small. When the Kn number is not very small, i.e.
Kn > 0.001, the slip boundary condition for the Navier–Stokes equations must be
taken into account. However, there exist simple examples, as presented by Zheng,
Garcia & Alder (2002a, b) and those in the current paper in § 3, to show that even
in the slip flow regime, the Navier–Stokes equations can give qualitatively different
results from the reliable DSMC solutions. Therefore, in order to explore fully the
flow physics in the slip regime, a scheme based on equations higher than the Navier–
Stokes order becomes necessary. In other words, there is still room scientifically
and practically to develop schemes beyond the Navier–Stokes equations in the slip
flow regime for microflow simulations. In the past 70 years, many schemes have
been developed for the Burnett equations. Agarwal, Yun & Balakrishnan (2001)
presented an excellent review of the history of the Burnett equations. Owing to
the complex nature of the Burnett orders, i.e. the connection between the material
derivative and the spatial derivative or the stability considerations, many version of
macroscopic Burnett equations have been adopted in the study of non-equilibrium
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flow problems, such as the shock structure, boundary layer and the microchannel
flows. However, for long microchannel flows, such as length of the order of thousands
of micrometres, the direct simulation based on the Burnett equations has not yet been
done.

In the past, gas-kinetic schemes have been developed successfully for the continuum
flow simulations. The main idea of the gas-kinetic BGK-type schemes is first to
translate the macroscopic flow variables into a gas distribution function, then the
time evolution of the gas distribution function is followed based on the gas-kinetic
model, such as the BGK model (Bhatnagar, Gross & Krook 1954), from which
the flux is evaluated to update the macroscopic flow variables. Since the heat flux
across the cell interface can be modified in the numerical scheme according to the
correct Prandtl number, the validity of the BGK scheme is beyond the original BGK
model with unit Prandtl number. In an early paper, the gas-kinetic BGK Navier–
Stokes (BGK–NS) solver has been constructed and applied to many viscous and heat
conduction flow problems (Xu 2001), such as the shock structure and boundary layer.
Theoretically, as analysed by Ohwada (2002), the BGK–NS scheme is consistent
with the railroad method derived from the gas-kinetic theory. In order to further
increase the capacity of the BGK-type scheme in the near continuum flow simulation,
in this paper we extend the BGK–NS method to the Burnett order, where higher-
order terms in the Chapman–Enskog expansion are included in the gas distribution
function. Since the gas-kinetic BGK–Burnett method follows the time evolution of the
gas distribution function explicitly in the gas evolution stage, it is different from any
other approach where the macroscopic Burnett equations are discretized directly, such
as the method of Balakrishnan (1999). In the current gas-kinetic method, because
all flow variables are simply the moments of a single particle distribution function,
numerically it becomes more convenient to follow a single distribution function rather
than all higher-order terms in the Burnett equations. For example, in the gas-kinetic
scheme, the higher-order temporal variations in the gas distribution function can be
evaluated directly according to the compatibility condition. Furthermore, since the
gas distribution function is evaluated explicitly at the boundary, the reflection of
the particles can be done easily. This is one of the advantages of using the gas-
kinetic BGK–Burnett method in the microchannel flow rather than discretizing the
macroscopic Burnett equations directly.

After constructing the numerical scheme, we use it in the study of microchannel
flow. First, it is used in the external-force- and pressure-driven Poiseuille flow in
the slip flow regime with Kn= 0.1. In the early studies by Zheng et al. (2002a, b),
the qualitative differences in the results between the Navier–Stokes with slip
boundary condition and the DSMC are realized. The BGK–Burnett calculation
in this paper confirms the accuracy of the DSMC solution and points out the
necessity of developing a higher-order method, even in the slip flow regime. As
the Knudsen number increases, such as in the regime 0.1 � Kn � 1.0, the difference
between the BGK–Burnett and BGK–NS solutions in the mass flow rate can be
clearly seen in figure 8. Following the validation of the BGK–Burnett method,
it is then applied to the microchannel flow calculations. Owing to the significant
scatter of the experimental data, the most recent and accurate experiments of
Zohar et al. (2002) are tested. The simulation results are compared with the exp-
erimental data for different gases under different flow conditions. Also, the
similarity and differences between the gas-kinetic BGK–Burnett solution and the
analytic solution of the Navier–Stokes equations of Arkilic et al. (1997) are
presented.
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2. A gas-kinetic BGK–Burnett flow solver
The focus in a finite-volume gas-kinetic scheme is to construct a time-dependent

gas distribution function f at a cell interface, from which the numerical flux can be
obtained. For example, in the one-dimensional case, the Navier–Stokes or Burnett
equations can always be written in a conservative form, Wt + Fx = 0, where W is the
conservative flow variable and F is the corresponding flux. Numerically, this equation
can be discretized as

Wn+1
j = Wn

j +
1

�x

∫ tn+1

tn

(
Fj−1/2(t) − Fj+1/2(t)

)
dt,

where �x is the cell size and �t = tn+1 − tn is the time step. The gas-kinetic scheme is
mainly about the evaluation of the fluxes at the cell interface in the above equation.

2.1. Initial macroscopic data reconstruction

For the Navier–Stokes equations, the stress and heat conduction terms are
proportional to the first-order derivatives of macroscopic variables. So, in the BGK–
NS scheme (Xu 2001), based on the cell averaged initial macroscopic variables, only
the piecewise linear flow distributions inside each cell are constructed, such as the
density distribution ρ = ρ0 + ρ1x. In order to extend the BGK scheme to the Burnett
order, a second-order interpolation for the macroscopic flow variables is required,
from which a non-equilibrium gas distribution function up to (Kn)2 can be obtained.

Suppose at the beginning of each time step tn, the cell averaged mass, momentum
and energy for a two-dimensional flow are denoted by wj = (ρj , (ρU )j , (ρV )j , (ρE)j )
in the cell j for x ∈ [xj−1/2, xj+1/2] with cell size �x. The interface xj+1/2 between cells
j and j + 1 is assumed to be xj+1/2 = 0. With the initial data wj−1, wj , wj+1, wj+2,
the continuous flow distribution around x = 0 can be constructed as

w̄(x, 0) = w0 + w1x + 1
2
w2x

2, (1)

where up to the third-order accuracy, the cell interface values and their first- and
second-order spatial derivatives have the form

w0 = [7(wj + wj+1) − (wj−1 + wj+2)]/12,

w1 = [5(wj+1 − wj )/4 − (wj+2 − wj−1)/12]/�x,

and

w2 = 3(wj + wj+1 − 2w0)/(�x)2.

Note that w0, w1 and w2 all have four components to represent the mass, x and y

momentum, and energy distribution.

2.2. Gas-kinetic BGK–Burnett method

In this subsection, a directional splitting method to solve the two-dimensional BGK
equation will be presented. The BGK model in the x-direction can be written as
(Bhatnagar et al. 1954)

ft + ufx =
g − f

τ
, (2)

where f is the gas distribution function and g is the equilibrium state approached
by f . Both f and g are functions of space x, time t , particle velocities (u, v) and
internal variable ξ . The particle collision time τ is related to the viscosity and heat
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conduction coefficients. The equilibrium state is a Maxwellian distribution,

g = ρ

(
λ

π

)(K+2)/2

exp(−λ((u − U )2 + (v − V )2 + ξ 2)),

where ρ is the density, U and V are the macroscopic velocities in the x- and y-
directions, and λ = m/2kT , where m is the molecular mass, k is the Boltzmann
constant, and T is the temperature. For a two-dimensional flow with an explicit
account of macroscopic U and V velocities, the random particle motion in the z-
direction is included in the internal variable ξ , and the total number of degrees of
freedom K in ξ is

K =
2

γ − 1
− D, (3)

where D is the dimension of the space. For example, for a monatomic gas with
γ = 5/3, K is equal to 1 to account for the particle motion in the z-direction. For
a diatomic gas with γ = 1.4, besides the random z-direction motion, there are also
two internal rotating degrees of freedom. Therefore, K = 3 for a diatomic gas. The
internal variable ξ 2 = ξ 2

1 + ξ 2
2 + · · · + ξ 2

K . The relation between mass ρ, momentum
(ρU, ρV ), and energy ρE densities with the distribution function f is


ρ

ρU

ρV

ρE


 =

∫
ψαf dΞ (α = 1, 2, 3, 4), (4)

where ψα is the component of the vector of moments

ψ = (ψ1, ψ2, ψ3, ψ4)
T =

(
1, u, v, 1

2
(u2 + v2 + ξ 2)

)T
,

and dΞ = du dv dξ is the volume element in the phase space with dξ = dξ1 dξ2 . . . dξK .
Since mass, momentum and energy are conserved during particle collisions, f and g

satisfy the conservation constraint,∫
(g − f )ψα dΞ = 0 (α = 1, 2, 3, 4), (5)

at any point in space and time.
With the consideration of different time and length scales in the transport and

collision operators of the Boltzmann equation, the BGK model can also be written
in a dimensionless form

Kn(f̃ t̃ + ũf̃ x̃) = (g̃ − f̃ )/τ̃ ,

where Kn is the local Knudsen number. With the expansion of the solution f̃ ,

f̃ = g̃ + Knf̃ 1 + K2
n f̃ 2 + · · · , (6)

the Chapman–Enskog expansion can be used successively to determine all function
forms of f̃ 1, f̃ 2, . . . . Up to the Burnett order, only f̃ 2 is required. Besides the standard
Chapman–Enskog expansion, we can also find the solution of the BGK model (2)
directly by using the iterative method. For example, up to the Burnett order, the
iterative method for the BGK equation (2) gives the solution,

f = g − τDg + τD(τDg), (7)

where D= ∂t + u∂x and u is the particle velocity. It can be shown that up to the
super-Burnett order, the formal Chapman–Enskog solution (6) and the iterative
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solutions (7) are identical, see Ohwada & Xu (2003). Since we are going to develop a
scheme for the local time evolution around a cell interface, the variations of collision
time τ around a cell interface within a time step are ignored. Therefore, (7) can be
simplified,

f = g − τDg + τ 2D2g. (8)

Note that spatial and temporal variation of τ at different numerical cells and different
time steps are still accounted for in the current BGK–Burnett scheme by changing τ

cell by cell according to the viscosity coefficient and local pressure, equation (15).
The macroscopic BGK–Burnett equations of Balakrishnan (1999) are derived from

the simplified iterative solution. Since the compatibility condition
∫

ψD2g dΞ = 0
cannot be satisfied simply in their approach, Balakrishnan designed additional
moment closure terms in f2 in the derivation of macroscopic BGK–Burnett equations.
Also, with more realistic considerations, such as the variation of the collision
frequency, the macroscopic BGK–Burnett equations have been subsequently modified
in past years, such as the versions of 1996, 1998 and 1999 in Balakrishnan (1999). The
current gas-kinetic BGK–Burnett method is different from the previous approaches
mainly in the following respects. (i) The gas-kinetic BGK–Burnett scheme is based
on the evaluation of the gas distribution function directly without discretizing the
macroscopic Burnett equations, even without knowing the explicit forms of the Burnett
equations. (ii) The construction of the time-dependent gas distribution function f up
to τ 2 terms involves second-order temporal derivatives of a Maxwellian distribution.
Different from Balakrishnan’s closure method, the unknowns related to gtt in the
current method (see below) are uniquely evaluated according to the compatability
condition

∫
ψf2 dΞ = 0. (iii) As shown below, the current BGK–Burnett method can

justify the Prandtl number according to the values of the real gases. Therefore, both
viscous and heat conduction effects can be captured. (iv) Owing to the evaluation of the
gas distribution function, the slip boundary condition can be obtained automatically
with the particle reflections from the boundary.

The general solution f of the BGK model (2) at a cell interface xi+1/2,j and time t

is

f
(
xi+1/2,j , t, u, v, ξ

)
=

1

τ

∫ t

0

g(x ′, t ′, u, v, ξ )e−(t−t ′)/τ dt ′ + e−t/τ f0

(
xi+1/2,j − ut

)
, (9)

where x ′ = xi+1/2,j − u(t − t ′) is the particle trajectory and f0 is the initial gas
distribution function f at the beginning of each time step (t = 0). Two unknowns g

and f0 must be specified in (9) in order to obtain the solution f . In order to simplify
the notation, xi+1/2,j = 0 will be used in the following text.

In order to obtain the solution f in (9), we must first evaluate the initial non-
equilibrium state f0 at the beginning of each time step. For the microflows, the
thickness of the channel may be of the order of the mean free path. If the flow
structure inside the channel is well resolved by the mesh size, such as 20 grid points
in the vertical direction of the channel, different from the shock capturing scheme,
there is no need to introduce flow discontinuities at the cell interface to include the
additional kinematic dissipation in the initial data (Xu 2001). So, in the smooth-flow
case, up to the Burnett order, the non-equilibrium distribution function at t = 0 has
the form,

f0(x, 0) = g(x, 0) − τDg + τ 2D2g,

where g is the equilibrium state, and −τDg and τ 2D2g contribute the non-equilibrium
parts corresponding to the Navier–Stokes and Burnett orders (Ohwada & Xu 2003).



Microchannel flow in the slip regime 93

More specifically, the non-equilibrium distribution f1 for the Navier–Stokes order has
the form

f1 = −τDg = −τ (gt + ugx),

and for the Burnett order

f2 = τ 2(D2g + B ′′g) = τ 2(gtt + 2ugxt + u2gxx + B ′′g),

where B ′′ is from the time derivative of a certain part in τDg, which will be given
explicitly later. Therefore, the initial non-equilibrium states can be written as

f0(x, 0) = g(x, 0) − τ (gt + ugx) + τ 2(gtt + 2ugxt + u2gxx + B ′′g).

When we further expand g(x, 0), gt (x, 0) and gx(x, 0) around the point (x = 0, t = 0),
up to the second-order spatial derivatives we have

f0(x, 0) = g(0, 0) + gxx + 1
2
gxxx

2 − τ (gt + ugx) − τ (gxt + ugxx)x

+ τ 2(gtt +2ugxt + u2gxx +B ′′g).

The direct Taylor expansions of a Maxwellian distribution function g can be expressed
as

gx = ag, gt = Ag,

gxx = (a2 + b)g, gxt = (aA + C)g,

gtt = (A2 + B ′)g,

where all parameters a, A, b, C, B ′ and B ′′ have the following functional dependences
on ψ ,

q = q1 + q2u + q3v + q4(u
2 + v2 + ξ 2).

In other words, there are four unknowns in each of the parameters (a, A, b, B ′, B ′′, C)
in the two-dimensional case. With the above definitions, the initial non-equilibrium
state around a cell interface becomes

f0(x, 0) =
(
1 + ax + 1

2
(a2 + b)x2

)
g(0, 0)

− τ [(ua + A) +
(
(aA + C) + u(a2 + b))x]g(0, 0)

+ τ 2[(A2 + B) + 2u(aA + C) + u2(a2 + b)]g(0, 0), (10)

where B = B ′ + B ′′. From the initially interpolated macroscopic variables in (1),
we can determine f0 through the connection between macroscopic and microscopic
variables,

w0 + w1x + 1
2
w2x

2 =

∫
f0ψα dΞ (α = 1, 2, 3, 4).

In order to further simplify the notation, let us define 〈· · ·〉 as

〈· · ·〉 =

∫
(· · ·)ψαg(0, 0) dΞ for α = 1, 2, 3, 4.

Then, the equilibrium state g(0, 0) can be determined first by

w0 =

∫
ψαg(0, 0) dΞ = 〈1〉.

For example, the free parameters (ρ0, U0, V0, λ0) in g(0, 0) can be found from
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w0 = (ρ0, ρ0U0, ρ0V0, ρ0E0)
T , such as

λ0 =
K + 2

4

ρ0

ρ0E0 − 1
2
ρ0

(
U 2

0 + V 2
0

) .

Consequently, the parameters a1, a2, a3 and a4 in a = a1 + a2u+ a3v + a4(u
2 + v2 + ξ 2)

and b1, b2, b3 and b4 in b = b1 + b2u + b3v + b4(u
2 + v2 + ξ 2) can be found from

〈a〉 = w1 ≡
(

∂ρ

∂x
,
∂(ρU )

∂x
,
∂(ρV )

∂x
,
∂(ρE)

∂x

)T

,

〈(a2 + b)〉 = w2 ≡
(

∂2ρ

∂x2
,
∂2(ρU )

∂x2
,
∂2(ρV )

∂x2
,
∂2(ρE)

∂x2

)T

.

For detailed formulation about the evaluation of all parameters in a and b from the
above equations, see the Appendix in Xu (2001).

After finding a and b, based on the condition on the Chapman–Enskog expansion,
such as 〈f1〉 = 0 and 〈f2〉 =0, we have

〈A + ua〉 = 0,

〈C + aA + u(a2 + b)〉 = 0,

〈B ′ + A2 + u(Aa + C)〉 = 0,


 (11)

and

〈B + A2 + 2u(aA + C) + u2(a2 + b)〉 = 0. (12)

Therefore, the parameters A, C, B ′ and B ′′ are uniquely obtained from the above
equations. The use of (11) and (12) not only uniquely determines all coefficients in A

and B , but also satisfies the compatibility condition
∫

ψf1 dΞ = 0 and
∫

ψf2 dΞ = 0.
It can be shown that under the assumption of local constant τ , the above iterative
solution is identical to the formal solution in the Chapman–Enskog expansion of the
BGK model (Ohwada & Xu 2003). In other words, the above expansion for the BGK
Burnett solution is unique and there is no freedom to change any parameter.

After having f0 at the beginning of each time step, in a well-resolved microchannel
flow, we can expand the equilibrium state g(x, t) around (x = 0, t = 0) as well,

g(x, t) =
[
1 + ax + 1

2
(a2 + b)x2 + At + 1

2
(A2 + B ′)t2 + (C + Aa)xt

]
g(0, 0). (13)

When substituting both f0 and g into the integral solution of the BGK model (9), we
have

f (0, t) = g
[
1 − τau + (−τ + t)A +

(
τ 2 − τ t + 1

2
t2

)
(A2 + B ′)

+ (2τ 2 − τ t)(aA + C)u + τ 2(a2 + b)u2 + B ′′(τ 2 − τ t)
]
. (14)

This is the time accurate gas distribution function at a cell interface for the flux
evaluation in the gas-kinetic BGK–Burnett scheme. If f only keeps the first few
terms, such as

f = g[1 − τau + (−τ + t)A],

in the smooth flow region the BGK–NS scheme is recovered (see Xu 2001).
In the above particle distribution function, the only unknown is the particle collision

time τ . From the gas-kinetic theory (Vincenti & Kruger 1965), the dynamic viscosity
coefficient µ can be expressed as,

µ = τp, (15)
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where τ is the particle collision time and p is local pressure. The viscosity coefficient
µ can be evaluated according to the molecular model of particle interaction, such
as the hard-sphere or soft-sphere models, or given by the experiments. Therefore,
τ is determined locally from (15). For example, up to the Navier–Stokes order
f = g − τDg, the viscous stress for the BGK model is

σkl = τp

[(
∂Uk

∂xl

+
∂Ul

∂xk

− 2
3
δkl

∂Ui

∂xi

)
+

2K
3(K + 3)

δkl

∂Ui

∂xi

]
, (16)

where K is the rotational degree of freedom (equation (3)), such as K = 2 for a
diatomic gas. As noted in (16), the corresponding first and second viscosity coefficients
are

µ = τp, ς = µ
2K

3(K + 3)
. (17)

For a monatomic gas, the bulk viscosity ς = 0. For a diatomic gas, ς = 4/15µ. Since
the compressibility for the microchannel flow is small, the bulk viscosity term has a
limited effect on the macroscopic flow distribution.

With the gas distribution function in (14), the time-dependent numerical fluxes in
the gas-kinetic BGK–Burnett solver in the x-direction across the cell interface are
computed by


Fρ

FρU

FρV

FρE




i+1/2,j

=

∫
u




1
u

v
1
2
(u2 + v2 + ξ 2)


f

(
xi+1/2,j , t, u, v, ξ

)
dΞ. (18)

By integrating (18) to the whole time step �t , we obtain the total mass, momentum
and energy transport. Similarly, the flux Gi,j+1/2 in the y-direction can be evaluated
as well. Therefore, the flow variables of mass, momentum and energy densities
W = (ρ, ρU, ρV, ρE)t inside each cell can be updated by

Wn+1
i,j = Wn

i,j +
1

�x

∫ �t

0

(
Fi−1/2,j − Fi+1/2,j

)
dt +

1

�y

∫ �t

0

(
Gi,j−1/2 − Gi,j+1/2

)
dt.

In the external force driven flow, additional force terms in the momentum and energy
equations must be added on the right-hand side of the above equation. Since the
gas-kinetic BGK–Burnett method is an explicit time accurate scheme, the time steps
�t in all calculations are determined by CFL and the stability condition from the
dissipative term �t � (�x)2/2ν, where ν is the kinematic viscosity coefficient ν = µ/ρ.
All steady-state solutions are obtained from the time accurate BGK–Burnett solver
with long time integration.

2.3. Prandtl number fix in the gas-kinetic BGK–Burnett scheme

It is well known that the above BGK–Burnett scheme corresponds to unit Prandtl
number. In order to simulate the flow with any realistic heat conduction coefficient,
we have to modify the above formulation. Similar to the Shakhov (1968) model, the
simplest way to do this is to adjust the heat flux in the total energy flux of (18) (Chae,
Kim & Rho 2000; Xu 2001). Since f at the cell interface is explicitly evaluated in
(14), the time-dependent heat flux can be obtained precisely,

q = 1
2

∫
(u − U )((u − U )2 + (v − V )2 + ξ 2)f dΞ, (19)
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where the average velocities U and V are defined by

U =

∫
uf dΞ

/∫
f dΞ, V =

∫
vf dΞ

/∫
f dΞ.

Then, after evaluating the heat flux q , for a specific Prandtl number Pr , such as
Pr = 2/3 for the monatomic gas and Pr = 0.72 for the diatomic gas, we can modify
the total energy flux (18) as

Fnew
ρE = FρE +

(
1

Pr
− 1

)
q. (20)

Little computational time is involved in the above Prandtl number fix, since all
momentum in q has been obtained in the evaluation of the original energy flux.
In other words, the reliability of the above gas-kinetic BGK–Burnett method is
beyond the BGK model itself. It can be considered as a new discretized model in the
near continuum flow regime. We emphasize again that the gas-kinetic BGK–Burnett
scheme is based on the direct evaluation of the gas distribution function at a cell
interface (14) rather than discretizing the macroscopic Burnett equations.

2.4. Gas-kinetic boundary condition

The interaction between the gas flow and the solid boundary has been explicitly
pointed out by many authors (see Patterson 1956; Cercignani 2000). This section is
mainly about how to implement these ideas numerically in the gas-kinetic BGK–
Burnett scheme.

For the microflows in the near continuum regime, even for the Navier–Stokes
equations the application of the slip boundary condition becomes necessary. Since the
gas-kinetic BGK schemes are based on the time evolution of gas distribution function
to update the flow variables, the slip boundary condition can be obtained naturally
for both the BGK–NS and BGK–Burnett methods.

In the slip flow regime, with the one-sided interpolation of the conservative variables
up to the wall, we can use the technique presented in the last section to evaluate
the gas distribution function f in there, see (14). Therefore, we can evaluate the total

number of particles hitting the wall
∫ �t

0

∫
u<0

uf in dΞ dt . All these particles will be
reflected from the wall according to the specular reflection coefficient β . With the
assumption of wall temperature λw , we can construct an equilibrium state there first,
i.e.

gw = ρw

(
λw

π

)(K+2)/2

exp(−λw(u2 + v2 + ξ 2)).

In the above equilibrium state, the solid wall is assumed to be stationary. The
requirement that no particles penetrate the wall is equivalent to

∫ �t

0

∫
u>0

gw dΞ dt = −
∫ �t

0

∫
u<0

uf in dΞ dt,

from which the density ρw in gw can be obtained

ρw = −2
√

πλw

�t

∫ �t

0

∫
u<0

uf in dΞ dt.
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Therefore, the total gas distribution function at the wall for the accommodation
coefficient (σ = 1 − β) can be written as

f total = (1 − β)gw
u>0 + f in

u<0 + βf in
u<0(−u, v),

where the term βf in
u<0(−u, v) accounts for the component with specular reflection from

the surface. In the case of no specular reflection, such as the full accommodation
case σ = 1, β is equal to 0. In all our calculations in this paper, σ = 1 is used. After
obtaining the gas distribution function f total at the wall, the flux across the solid
boundary can be evaluated in the same way as (18). The slip boundary condition
forms automatically from f total in the gas-kinetic BGK scheme, such as the slip
velocity

Vslip =

∫
vf total dΞ∫
f total dΞ

	= 0,

along the solid surface.
Inlet and outlet boundary conditions for the pressure-driven microchannel flows

are the following. At both inlet and outlet faces, the pressure, temperature and
transverse flow velocity are specified at the inlet, leaving the streamwise velocity to
be obtained using second-order interpolation from the interior region, the inflow
boundary conditions are imposed as

ρin = ρ+, pin = p+, Uin = 2U1 − U2, Vin = 0,

where 1 refers to the first cell inside the computational domain, 2 is the second cell,
and p+ and ρ+ are the given inlet pressure and density while the temperature for the
incoming gas is known in experiments. For the outflow boundary condition, only the
pressure is specified and the remaining variables are obtained by the second-order
extrapolation from interior region. The outflow boundary conditions are

ρout =2ρout−1 − ρout−2, pout = p−, Uout = 2Uout−1 − Uout−2, Vout = 2Vout−1 − Vout−2

where (out − 1) is the last cell inside the computational domain, and p− is the given
outlet pressure. The implementation of similar kinetic boundary condition is also
discussed for the discrete particle velocity method in Li & Zhang (2004).

3. Study of microchannel flows
In this section, the gas-kinetic BGK–Burnett scheme developed in the last section

will be used to study the microchannel flows in the slip flow regime. The cases studied
include the Poiseuille flow and the experiments of Zohar et al. (2002).

3.1. External force and pressure driven Poiseuille flows

The first case is about Poiseuille flow under the external forcing term with the
Knudsen number Kn = 0.1. As pointed out by many authors, see Santos et al.
(1989), Malek, Baras & Garcia (1997), Uribe & Garcia (1999) and Aoki, Takata &
Nakanishi (2002), even for this simple case with relative small gradient and Knudsen
number, the Navier–Stokes equations fail to predict a qualitative correct solution.
Specifically, for the external-force-driven case, the Navier–Stokes equations fail to
reproduce the central minimum in the temperature profile and a non-constant
pressure profiles in the cross-stream direction, which are both predicted by the
kinetic theory and observed in the DSMC simulations. Furthermore, based on the



98 K. Xu and Z. Li

–1000 –500 0 500 1000
1.20

1.21

1.22

1.23

1.24

ρ

–1000 –500 0 500 1000

6.25

6.30

6.35

6.40

–1000 –500 0 500 1000
1.02

1.03

1.04

1.05

1.06

y

T

–1000 –500 0 500 1000
0.1

0.2

0.3

0.4

0.5

y

U

(×10–3)

p

(×10–4)

Figure 1. Flow distribution in the cross-stream direction in the external-force-driven case.
�, DSMC results (Zheng et al. 2002b); ——, BGK–NS solutions (Xu 2001). The constant
pressure distribution in the Navier–Stokes solution is independent of the slip boundary
conditions.

Navier–Stokes equations, it is not possible to correct this failure by modifying
the equation of state, transport coefficients or boundary conditions. Unlike the
slip phenomena, the discrepancy is not just near a boundary, but throughout
the system. The similar discrepancy is also happening for the pressure-driven
case.

The set-up of the external force driven case is as follows (Zheng et al. 2002a, b).
The simulation fluid is a hard sphere gas with reference particle mass m = 1 and
diameter d = 1. At the reference density of ρ0 = 1.21 × 10−3, the mean free path
is l0 = m/(

√
2πρ0d

2) = 186. The distance between the thermal walls is Ly = 10l0 and
their temperature is set at T0 = 1.0. The reference fluid speed is U0 = 1 =

√
2kT0/m,

so the Boltzmann constant is taken as k = 1/2. The reference sound speed is c0 =√
γ kT0/m = 0.91 with γ = 5/3 for a monatomic gas. The reference pressure is p0 =

ρ0kT0/m = 6.05 × 10−4. The acceleration and pressure gradient are chosen so that the
flow will be subsonic, laminar and of similar magnitude in the two cases. Specifically,
ρ0| f | = 8.31 × 10−8 for the acceleration-driven case and dp/dx = 1.08 × 10−7 for the
pressure-driven case (p+ = 3p0/2, p− = p0/2, Lx = 30l0), in both cases the Knudsen
number is Kn = l0/Ly = 0.1 and the Reynolds number is of order one. In all
calculations, the cell size is half the mean free path of the initial data.

Figure 1 presents the results for the force-driven case in the cross-stream direction
using the BGK–NS method (Xu 2001) with the slip kinetic boundary condition
presented in the last section. The circles in figure 1 are the well-verified DSMC
results (Zheng et al. 2002b). Since the BGK–NS is an accurate Navier–Stokes solver,
even with the slip boundary condition, the pressure distribution is a constant in the
cross-stream direction, which is different from the DSMC solution. In the paper by
Zheng et al. (2002b), a different Navier–Stokes solver is used for the NS solution, but
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Figure 2. Flow distribution in the cross-stream direction in the external-force-driven case.
�, DSMC results (Zheng et al. 2002b); ——, gas-kinetic BGK Burnett.

both NS methods give similar results qualitatively. In order to resolve the discrepancy
between the NS and DSMC solutions, the gas-kinetic BGK–Burnett solver developed
in the last section is used and figure 2 is the simulation result. As shown in this
figure, the curved pressure distribution in the cross-stream direction is captured well.
So, up to the Burnett order, the non-constant pressure distribution can be obtained.
This result is consistent with the analysis in Uribe & Garcia (1999); however, the
temperature minimum at the centre does not appear in the current BGK–Burnett
solution. The temperature minimum at the centre can be explained using the gas-
kinetic BGK-super-Burnett scheme (Xu 2003).

For the pressure driven case, the length of the channel is about 30 mean free
paths. First, the BGK–NS code is used in this case as well. Figure 3 shows the flow
distribution along the centreline of the channel, where the circles are the DSMC
solutions. As seen in this figure, the BGK–NS code does capture the flow distribution
accurately in the stream direction, which is consistent with the general belief that
the Navier–Stokes equations with the slip boundary condition can be faithfully
applied in the slip flow regime of Kn � 0.1 (Karniadakis & Beskok 2002). However,
in the cross-stream direction at the middle of the channel, the flow distribution
calculated by the BGK–NS code is shown in figure 4. This figure clearly shows the
inconsistency in pressure distribution between the BGK–NS and DSMC solutions.
For example, the Navier–Stokes equations with slip boundary condition predict the
maximum pressure at the centre. However, the DSMC gives the opposite conclusion.
This phenomenon is irrelevant with the slip boundary condition or constitutive
relationship. This phenomena clearly shows that a scheme based on equations higher
than the Navier–Stokes is necessary to explore the flow behaviour in the slip regime.
Figure 5 is the result from the current BGK–Burnett scheme. Except for the small
variation along the boundary, there is excellent agreement in the interior region
between the DSMC and the BGK–Burnett solutions. In other words, the correct
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capturing of the pressure distribution in the cross-stream direction is beyond the
Navier–Stokes equations. In terms of efficiency, the BGK–Burnett is much faster
than the DSMC code. For the current calculation in the pressure-driven case, the
BGK–Burnett uses less than half an hour to obtain the converged flow distribution
using a standard PC with Pentium IV processor. However, it takes days for the
DSMC method to reduce the statistical noise and obtain a smooth solution.
Figures 6 and 7 show the two-dimensional contours of the BGK–Burnett (upper)
and the DSMC (lower) solutions for the pressure-driven case. Since the V velocity in
the cross-stream direction is very small in comparison with the U velocity, as shown
in figure 7, it is hard for the DSMC method to capture such a small value. To obtain
a smooth inlet and outlet boundary condition is also difficult for the DSMC method
owing to its statistical nature.

In order to further validate the BGK–Burnett approach, we have calculated the
mass flow rate through the channel for the pressure-driven Poiseuille flow. Both BGK–
NS and BGK–Burnett schemes are used in the current calculation. The normalized
mass flow rates are defined by Q/ρU ∗h, where Q is the mass flow rate and ρU ∗h
is the normalization factor. The velocity U ∗ is defined by U ∗ = α

√
2kT /m, where

α is related to the pressure gradient in the channel p = p0(1 + αx/h) and h is
the channel width. The calculated solutions, as well as the analytic solution of
Ohwada, Sone & Aoki (1989), are shown in figure 8. From this figure, we can clearly
see the improvement of the BGK–Burnett solution over the BGK–NS. For most
microchannel flows in the laboratory, such as the experiments by Zohar et al. (2002),
the highest Knudsen number at the outlet is about 0.2. Therefore, in the flow regime
of these experiments, the slip Navier–Stokes equations are capable of capturing the
physical solution. However, as the Knudsen number increases, such as up to 0.5, the
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Figure 6. (a) Density, (b) pressure and (c) temperature contours for the pressure-driven
Poiseuille flow with the domain 30l0 × 10l0, where l0 is the mean free path. Upper part of the
tube: BGK–Burnett; lower part of the tube: DSMC (Zheng et al. 2002b). In the temperature
plot, non-dimensional contours T/Twall are plotted.

BGK–Burnett should be a more appropriate numerical method than the Navier–
Stokes ones.

3.2. Similarity pressure distribution along the microchannel

Based on the compressible Navier–Stokes equations and the slip boundary conditions,
many authors have presented the analytic solutions for the microchannel flow. For
example, Arkilic et al. (1997) presented a two-dimensional analysis with the first-order
velocity slip boundary condition, and demonstrated the effects of both compressibility
and rarefaction in long microchannels. They showed that the zero-order analytic
solution corresponded well with the experimental results of Pong et al. (1994). Zohar
et al. (2002) have solved the isothermal hydrodynamic equations using perturbation
methods for both circular and plannar microchannels. Their consistent expansions
provide not only the cross-stream, but also the streamwise evolution of the various
flow parameters of interest, such as pressure, density and Mach number. In terms of
the pressure distribution, the difference between the results of Arkilic et al. (1997)
and Zohar et al. (2002) are marginal. For example, the pressure distribution along
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the central line of the channel can be simplified to the following similarity solution,

p(x)

p0

= −6Kn0 +

{(
6Kn0 +

pi

p0

)2

−
[(

p2
i

p2
0

− 1

)
+ 12Kn0

(
pi

p0

− 1

)](
x

L

)}1/2

,

(21)
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Figure 9. Solutions of pressure distribution along the microchannel for nitrogen gas with
H = 1.2 µm and L = 36, 72, 108, 144, 216 µm, respectively. The pressure ratio is pi/po = 1.891.
�, DSMC solution for L = 36 µm; �, experimental data of Pong et al. (1996), and all lines
are the BGK–Burnett solutions with different channel lengths.

where L is the length of the channel, Kn0 is the Kundsen number at the outlet, pi

and p0 are the pressures at the inlet and outlet separately, and x is the streamwise
coordinates.

In order to test the validity of the similarity solution from the gas-kinetic BGK–
Burnett method as well, we calculate a few cases with different channel lengths for
the nitrogen gas. The channel and flow parameters are

H = 1.2 µm, pi/p0 = 1.891, p0 = 101 kPa, Tw = 300 K,

and the total lengths are, respectively,

L = 36 µm, 72 µm, 108 µm, 144 µm, 216 µm.

The pressure distributions are shown in figure 9, as well as the DSMC results of Yan &
Farouk (2002) for the short channel (L = 36 µm) and experimental data of Pong et al.
(1994). As shown in this figure, there is a similarity pressure profile for the gas-kinetic
BGK–Burnett solution, which is consistent with both the DSMC result and the
experiment.

3.3. Pressure distribution and mass flow rate for long microchannels

In this subsection, we apply the gas-kinetic BGK–Burnett method to the study of
subsonic long micro-channel flows. Zohar et al. (2002) obtained accurate measure-
ments of the pressure distribution and mass flow rates for different gases, such as
argon, helium and nitrogen, for a channel with L = 4000 µm. Since there is a similarity
solution in pressure distribution, the solution (21) with zero flow velocity is used as
the initial condition for the long microchannels. Then, the mass flow rate is evaluated
after the steady-state solution is obtained.
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H = 0.53 µm for the pressure differences �p (kPa)= 95.733, 161.533, 233.267, 300.267,
respectively. Symbols, experimental data (Zohar et al. 2002); lines, BGK–Burnett solutions.
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With the outlet pressure fixed as one standard atmosphere for the argon gas at room
temperature, the experiments are carried out with the following pressure differences
between the inlet and outlet,

�P (kPa) = 95.733, 161.533, 233.267, 300.267,

and the corresponding pressure ratios are

pin/pout = 1.945, 2.594, 3.302, 3.963.

The measured pressure profiles along the channel as well as the simulation results from
the BGK–Burnett method are shown in figure 10. In order to see the nonlinearity in
thepressure distribution, the deviation between the pressure distribution and the linear
one, i.e. (p−plinear)/po, is plotted in figure 11 for both cases of �P (kPa) = 161.533 and
300.267. The analytic solutions based on (21) are also included. From this figure, we
can clearly see that both the direct BGK–Burnett solution and the analytic solution of
the Navier–Stokes equations have stronger nonlinearity than the experimental results
for the high pressure ratio case, and the analytic solutions for the NS equations
are slightly shifted to the downstream region. For the nitrogen gas with pressure
differences

� (kPa) = 241.5068, 179.6701, 112.3367,

the measured pressure distributions and the BGK–Burnett solutions are shown in
figure 12. The nonlinear deviation (p−plinear)/po from the experiments, BGK–Burnett
solutions, and the analytic one (21), are presented in figure 13. Different from the
monatomic argon gas, the nonlinearity of the BGK–Burnett solution for the diatomic
nitrogen is stronger than the analytic one. As tested by varying the viscosity coefficient,
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the deviation is not caused by the additional bulk viscosity contribution in the
BGK–Burnett solution, it results mainly from the extra term in the Burnett equations
in comparison with the Navier–Stokes equations.
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In terms of the mass flow rates, Zohar et al. (2002) have tested the argon, nitrogen,
and helium gases with the following pressure differences

argon : �P (kPa) = 100.60, 167.50, 234.20, 299.93, 365.90,

nitrogen : �P (kPa) = 101.73, 169.43, 236.43, 301.47, 368.10,

helium : �P (kPa) = 102.10, 169.40, 234.50, 302.10, 366.27.

The microchannels have the heights H = 0.53 µm and 0.97 µm, respectively, with
the length L =4000 µm. The calculated mass flow rates based on the BGK–Burnett
method for different gases in the case of H = 0.53 µm are shown in figure 14. The
differences between the calculations and experiments are of the order of 2% − 10%.
Figure 15 shows the results for the nitrogen gas for a channel with H = 0.97 µm and
H = 0.53 µm, respectively. For the H =0.53 µm, the results for nitrogen gas are the
same as those in figure 14. The pressure differences for the H = 0.97 µm case are

�P (kPa) = 101.0, 127.0, 163.0, 193.0, 233.5, 300.0, 365.0,

which give the pressure ratios

pin/pout = 1.997, 2.253, 2.609, 2.905, 3.304, 3.961, 4.602.

Figure 15 shows that the simulation results take a smooth curve between the pressure
difference and the mass flow rate in comparison with the experimental one. There
seems to be a slight jump in the experimental mass flow rate around �p = 200 kPa.
As demonstrated in Zohar et al. (2002) and many others, only the compressibility
and slip-flow effects are important for the mass flow rate, where the flow acceleration
and the non-parabolic velocity profile can be neglected. In all calculations, we found
that the calculated mass flow rates are slightly lower than the experimental ones.
This is probably due to the use of a fully diffuse reflection boundary. As shown by
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Figure 14. Mass flow rates for argon, nitrogen and helium for the channel with H = 0.53 µm
and L = 4000 µm. The simulation results are slightly lower than the experimental ones owing
to the use of the full accommodation boundary condition.
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Figure 15. Mass flux rates for nitrogen with H = 0.97 µm and 0.53 µm.

Arkilic et al. (2001), the gas may not be fully accommodated at the boundary, and
the mass flow rate will increase subsequently when the value σ is less than 1.

4. Conclusion
In this paper, we first construct a gas-kinetic BGK–Burnett scheme based on the

gas-kinetic BGK model and second-order expansions for the Maxwell–Boltzmann
distribution function. Then, the scheme is applied to study the microchannel flow
in the slip flow regime. For the Poiseuille flow at Kn= 0.1, it is found that the
BGK–Burnett scheme gives a more accurate solution than the schemes based on the
Navier–Stokes equations with slip boundary condition. In other words, if a detailed
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solution is required in the cross-stream direction in the slip flow regime, equations
higher than the Navier–Stokes order, such as the Burnett, are needed. However, in
the streamwise direction at Kn = 0.1, the difference between the solutions from
the Navier–Stokes and BGK–Burnett are small. Since in the near continuum flow
regime, both DSMC and the direct solver of the Boltzmann equation have great
difficulties in terms of their accuracy because of the statistical noise, inlet and outlet
boundary conditions, and the decoupling between the collision and transport process,
the gas-kinetic schemes based on the continuum model in the particle velocity space
may play an important role here. In the second part of this paper, we use the gas-
kinetic BGK–Burnett scheme to study long microchannel flows, where the simulation
results match the experimental measurements accurately. Therefore, we can use the
BGK–Burnett solver in the study of flow phenomena in slip flow regime in the
microchannels. However, for the shock-wave calculation, it seems impossible to use
the current BGK–Burnett method to give an accurate solution in the high-Mach-
number case, such as M � 3.0 (Xu 2002). From our experience, we believe, like many
others, that in the shock-wave calculations, the Burnett type equations could work
properly and accurately only in cases where the Navier–Stokes equations do not fail
and higher-order equations could provide more accurate solutions. However, for the
channel flow, as shown in figure 8, the current BGK–Burnett method gives a more
accurate and reliable solution than the BGK–NS in the flow regime Kn � 1.0. In
the future, the BGK–Burnett scheme will be further used in the studies of the near
continuum and continuum flow phenomena, such as the ghost effects (Sone 2000) in
terms of the Navier–Stokes equations.
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Research Grant Council.

REFERENCES

Agarwal, R. K., Yun, K. Y. & Balakrishnan, R. 2001 Beyond Navier–Stokes equations for flows
in the continuum-transition regime. Phys. Fluids 10, 3061–3085.

Aoki, K., Takata, S. & Nakanishi, T. 2002 Poiseuille-type flow of a rarefied gas between two
parallel plates driven by a uniform external force. Phys. Rev. E 65, 026315:1.

Aristov, V. V. 2001 Direct methods for solving the Boltzmann equations and study of non-
equilibrium flows, Kluwer.

Arkilic, E. B., Breuer, K. S. & Schmidt, M. A. 2001 Mass flow and tangential momentum
accommodation in silicon micromachined channels. J. Fluid Mech. 437, 29–43.

Arkilic, E. B., Schmidt, M. A. & Breuer, K. S. 1997 Gaseous slip flow in long microchannels.
J. Microelectromech. Syst. 6, 167–178.

Balakrishnan, R. 1999 Entropy consistent formulation and numerical simulation of the BGK–
Burnett equations for hypersonic flows in the continuum-transition regime, PhD thesis,
Wichita State University.

Beskok, A. & Karniadakis, G. E. 1999 A model for flows in channels, pipes, and ducts at micro
and nano scales. Microscale Thermophys. Engng 3, 43–77.

Bhatnagar, P. L., Gross, E. P. & Krook, M. 1954 A model for collision processes in gases I: Small
amplitude processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525.

Bird, G. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon.



110 K. Xu and Z. Li

Cai, C., Boyd, D., Fan, J. & Candler, G. V. 2000 Direct simulation methods for low-speed
microchannel flows. J. Thermophys. Heat Transfer 14, 368–378.

Cercignani, C. 2000 Rarefied Gas Dynamics. Cambridge University Press.

Chae, D., Kim, C. & Rho, O. H. 2000 Development of an improved gas-kinetic BGK scheme for
inviscid and viscous flows. J. Comput. Phys. 158, 1.

Fan, J. & Shen, C. 2001 Statistical simulation of low-speed rarefied gas flows. J. Comput. Phys. 167,
393–412.

Ho, C. M. & Tai, Y. C. 1998 Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows, Annu.
Rev. Fluid Mech. 30, 579.

Karniadakis, G. E. & Beskok, A. 2002 Microflows: Fundamentals and Simulation. Springer.

Li, Z. H. & Zhang, H. X. 2004 Study on gas kinetic unified algorithm for flows from rarefied to
continuum. J. Comput. Phys. 193, 708–738.

Malek, M. M., Baras, F. & Garcia, A. L. 1997 On the validity of hydrodynamics in plane Poiseuille
flows. Physica A 240, 255.

Ohwada, T. 2002 On the construction of kinetic schemes. J. Comput. Phys. 177, 156–175.

Ohwada, T. & Kobayashi, S. 2004 Management of the discontinuous reconstruction in kinetic
schemes. J. Comput. Phys. 197, 116–138.

Ohwada, T., Sone, Y. & Aoki, K. 1989 Numerical analysis of the Poiseuille flow and thermal
transpiration flows between two parallel plates on the basis of the linearized Boltzmann
equation for hard-sphere molecules. Phys. Fluids 1, 2042.

Ohwada, T. & Xu, K. 2003 The kinetic scheme for the full-Burnett equations. J. Comput. Phys.
(submitted).

Oran, E. S., Oh, C. K. & Cybyk, B. Z. 1998 Direct simulation Monte Carlo: recent advances and
applications. Annu. Rev. Fluid Mech. 30, 403–441.

Patterson, G. N. 1956 Molecular Flow of Gases. Wiley.

Piekos, E. S. & Breuer, K. S. 1996 Numerical modeling of micromechanical devices using the
direct simulation Monte Carlo method. Trans. ASME I: J. Fluids Engng 118, 464–469.

Pong, K. C., Ho, C. M., Liu, J. Q. et al. 1994 Nonlinear pressure distribution in uniform
microchannels. ASME-FED 197, 51–56.

Santos, A., Brey, J. J., Kim, C. S. & Dufty, J. W. 1989 Velocity distribution for a gas with steady
heat flow. Phys. Rev. A 39, 320.

Shakhov, E. M. 1968 Generalization of the Krook kinetic relaxation equation. Fluid Dyn. 3, 95.

Sone, Y. 2000 Flows induced by temperature fields in a rarefied gas and their ghost effect on the
behavior of a gas in the continuum limit. Annu. Rev. Fluid Mech. 32, 779–811.

Uribe, F. J. & Garcia, A. L. 1999 Burnett description for plane Poiseuille flow. Phys. Rev. E 60,
4063–4078.

Vincenti, W. G. & Kruger, Jr. C. H. 1965 Introduction to Physical Gas Dynamics. Wiley.

Xu, K. 2001 A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with
artificial dissipation and Godunov method. J. Comput. Phys. 171, 289–335.

Xu, K. 2002 Regularization of the Chapman–Enskog expansion and its description of shock
structure. Phys. Fluids 14, L17.

Xu, K. 2003 Super-Burnett solutions of Poiseuille flow. Phys. Fluids 15, 2077.

Yan, F. & Farouk, B. 2002 Numerical simulation of gas flow and mixing in a microchannel using
the direct simulation Monte Carlo method. Microscale Thermophys. Engng 6, 235–251.

Zheng, Y., Garcia, A. L. & Alder, B. J. 2002a Comparison of kinetic theory and hydrodynamics
for Poiseuille flow. J. Stat. Phys. 109, 495–505.

Zheng, Y., Garcia, A. L. & Alder, B. J. 2002b Comparison of kinetic theory and hydrodynamics
for Poiseuille flow. Rarefied Gas Dynamics, vol. 23, Whistler, Canada.

Zohar, Y., Lee, S. Y. K., Lee, W. Y., Jiang, L. & Tong, P. 2002 Subsonic gas flow in a straight and
uniform microchannel. J. Fluid Mech. 472, 125–151.


